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INT. J. ELECTRONICS, 1995, vOL. 78, NO. 2, 219-225

Second-order intensity statistics of a coherent signal in the presence of
a random background

R. BARAKATY

The statistics of a harmonic signal (coherent component) mixed with a random
background (incoherent component) of a specified spectra profile (power spec-
trum) is still a problem of interest. The purpose of the present paper is to study the
second-order intensity statistics of such a signal/background situation using the
generalized Karhunen-Loevé expansion developed for use in photon counting and
laser speckle.

1. Introduction

In a classic paper written several years after the actual work (done during World
War II), Kac and Siegert (1947) determined the exact first-order statistics (i.e.
probability density and moments) of a square law detector for a gaussian random
field, and for an harmonic signal buried in a gaussian random field. Their approach
involves the construction of a homogeneous integral equation whose kernel is the
covariance function of the random field using what is now termed the Karhunen-
Loevé expansion (Selin 1965, Thomas 1964); although we can also term the
construction the Kac-Siegert expansion in as much as they derived it independently.
The eigenvalues determine the probability density function of the detacted intensity
(square of the field amplitude), while both eigenvalues and eigenfunctions are needed
for the probability density of the intensity of the signal and field. Emerson (1953)
also discussed the problem from an alternative viewpoint, using the method of
cumulants to avoid solving the associated homogeneous integral of Kac and Siegert.
For further work on the problem, see Slepian (1958). As Maver and Middleton
(1954) have pointed out, the original expansion method of Kac-Siegert is not
general enough to handle higher-order statistics such as product moments. However,
Kac-Siegert also presented another method of solution, the ‘direct’ method. which is
capable of handling higher-order statistics. The direct method requires an appro-
priate transformation to express the output in terms of the input; the statistics of the
output are then determined by suitable additional transformations with respect to
the original input statistics. Mayer® and Middleton exploited this approach to
determine the higher-order statistics of the output due to a square law detector for
both narrow-band and broad-band inputs. Kac-Siegert only considered the broad-
band situation.

The purpose of the present paper is to restudy the above problems for the
second-order intensity statistics using a generalization of the original Kac-Siegert
expansion approach. I employ two point detectors to interrogate the random input
(with and without the harmonic signal present). These detectors operate for the same
time interval but are delayed relative to each other by a variable time. The analysis is
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220 R. Barakat

performed via an expansion of the random field over these two disjoint time
intervals, using a generalization of the Karhunen-Loevé series developed for similar
problems in photon counting (Jakeman 1970, Blake and Barakat 1973, Barakat and
Blake 1980) and laser speckle (Barakat and Blake 1978). In this approach, a
homogeneous integral equation is constructed over the two disjoint time intervals
wherein the two detectors operate. The eigenvalues and eigenfunctions (which obey
an unusual orthogonality condition) are evaluated and used to fabricate a double
generating function; from this double generating function the various product
moments of the integrated intensities can be obtained by differentiation. Analysis is
confined to the narrow-band situation, although there is no difficulty in studying the
broad-band situation. I feel that the approach via the generalized Karhunen-Loevé
expansion offers a more satisfying physical picture than the direct method in as
much as the detector time intervals and delays are an inherent part of the analysis
via the associated disjoint integral equation.

2. Formal solution

The complex-value U() of the total disturbance is the sum of a deterministic (or
coherent) component U(¢) and a random background term U, (1)

U@)=U )+ Uy (1)
The coherent component is given by
Udd)=Eeexp(~ie) @

where ¢, is a constant. The random background U,(r) is taken to be a zero-mean.
complex-valued. spatially stationary gaussian random process, i.e.

U ()=U)+il) 3)

where U(1) is the stochastic Hilbert transform of UY(r). Both U and UL are

real-valued. Now U{(r) and U{(r) have the same gaussian probability density
function (PDF); also

U0y = U0y =0 ©
LYV = U)LYy = 5 rylt, — 1) (5)
UPOUL)) =0 (®)

where o is the variance of U,(r) and ry(ty—1,) is the corresponding correlation
function, 0<|r )< 1. Since U(z) is a gaussian random process. it is completely
characterized by its mean, variance, and correlation function.

The disturbance U'(1) is interrogated by two-point detectors. the first detector
operating during the time interval (—T/2.7:2) and the second during the time

interval (t—T/2. 7+ T/2) where 7 is the variable time delay. The integrated intensi-
ties Q; are
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T/2
Q= J UL+ U0 de
-T/2

@)
t+T/2
Qz=J. [U()+Uy(0)* dt

t=T/2

We can expand U,(?) in a generalized Karhunen-Loevé series (Jakeman 1970,
Blake and Barakat 1973, Barakat and Blake 1978, 1980) over the disjoint intervals

A, =(=T/2,T[2), Ay=(—T/2,t+T/2) ®)

so that

Y Udh(1), ted, and 4,
k=0
Uy ()= ()]
0, ¢4, and 4,
The following conditions are to be satisfied.

(1) The {U,} are random coefficients, independent of ¢; and the uncorrelated
gaussian random variables (hence, independent random variables)

(UkUT>=°'k25u V(IO)

where {o,} are, as yet, unknown, real non-negative constants. It is essential
that U () be gaussian, for if it is not then the expansion coefficients {U,} will
not be statistically independent, although they will still be uncorrelated.

(2) The deterministic functions {i,(f)} are to form a complete orthonormal set
over both 4, and 4,.

The precise statement of the orthogonality condition is quite unusual. Consider
the weighted sum of the integrated intensities: 1,Q, + 4,Q, where 4,, i, are arbitrary

real, non-negative parameters appearing in the two-fold generating function of the
integrated background intensities Q"

Qu(Ay,4;)=Lexp(—£,Q7)) (11)
We have

/‘.IQI+}.2Q2=§iUb(t)|2dt+§;[Uc(z)|zdr+§b},(r)b"§(1)dz+§b’§(1)UC(z)dr (12)

where
T2 T+ T2
é;s}.lj‘ +i.2J (13)
-T/2 t~T/2

§¢k([)¢ﬂt) dr=0y (14)

The first term on the right-hand side of (12) can be evaluated using (9) so that

We now require
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@

L,OP+2,QP =Y U’ (15)
k=0
The second term yields
<J§|Uc(r)|2dz=2l¢clzmx+zz) | (16)

The interaction integrals (third and fourth terms) are

3EUb(f)U Ande=Et i Uk§¢x(t)e)<p (iAr)d:
k=0

a7
§Uz<z)uc(z) ar=¢, § U:§¢xr)exp(—mr> a
k=0
Here
A=(w.—wg) (13)

is the frequency offset describing the position of the signal with respect to the
maximum of the background power spectrum. Consequently (12) reduces to

Q4 2,Q,= Y (U + 282 T2 +4y)

k=0
+¢&. z UiGi(4y, A2)+ 8% Z U,Gx(4y,4,) (19)
k=0 k=0
where
Gy(4y,47)= 3€¢k(f)€.’<p (1An)de (20)

To evaluate the unknown constants ¢, in (10), we must construct an integral
equation whose kernel is the correlation function of U,(r). The integral equation is

(2 +T)2 FAR
<"~1 I +2; J )%(’1 — W (t;)di, = <E> Yi(ty) n
. -T/2 t—-T/2

The correlation function ry(z, —1,) of the random background field is given by
rot; — 1) =exp {(iwg(t, — 1.)}g(1; — 15) (22)
where g (1, —15) is the correlation function centred at zero frequency and w,, is the

frequency at which the power spectrum (lineshape) of the background radiation is a
maximum. If we set ‘

D)=y (exp (ivg!) (23)
then (15) reads

T2 (e o\2
(zl J' +4; J )gb(ll —1,)¢(1;)de, = (") é(1y) (24)
-T2 -T2 o
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independent of w,. This is the basic integral equation for determining (a,/0)?; it is
not of the standard Fredholm type because of the presence of two disjoint domains
of integration. A second difficulty is that the eigenvalues o7/ are implicit functions
of 4; and 4,.

The double generating function of the random background, Q4(2,,4,), can be
expressed as an infinite product. From (11) (with U(r)=0 for the moment) we have

Qbal,zz>=r J U (-0 - 100 [T U, @)
o Jo k=0

where d2U, =dU{ dU, and f[{U,}] is the joint probability density function of the
statistically independent gaussian random variables

< ]
f[{Uk}]=kU0_£eXP{—lUk|2/0'E} (26)

ng

Upon substituting (15) into the integrand, we encounter a standard gaussian
integral; the final result is
@

Qu(4y,42)= n {1 +°'f(/.-1 ’ ;~2)]-l (27)

k=0

Now for the double generating function with the coherent signal included. Given
(11) and (19), it follows that

0,2 =exp (~ Ko T + 2} 1] 0l 2 (8)
where

- 1 = -— 2 -
Q(/'la;'z)zn_o_iJ‘f exp {—(L+0x U exp{-&56tU, ~ G UL d* U, (29)

-

To evaluate Q,, we note that since U, =V, +iW,, then

EGEU+EG Ut =a Vi +ib, W, (30)
where
a,=33G5+4:6,
(1)
b =226k — LG,
Consequently

1 © x
0z | mwl=Cearvi-an)a% | expi=t+arWi) o G2
k

-® -z

Both integrals are known
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0 T a2
j e (=(rorVi-ald dh=g +}{2)‘“ °Xp[4(1 +ka,:2)J e

2 2
® 2\ -2 — \/7; a; — by
.[ CXp{-—(-}-O’k)Wk }COSkadeVVk—(I+Ui)llzexp|:4(1+o,k—z)> (34)

- ®

Thus, Q,(4,,4,) reduces to

' [ XA
Consequently, the doublc'generating function for the background/signal is
. , = -1 1.Gl*a}
Q(iy, 2p)=exp { €T+ 20} [T U +eD) ™ ] exp{ £k
k=0 k=0 (1+0;
= Q415 42)Qu(A15 42)Qel41, £2) (36)

where Q., Q, are the generating functions for the coherent, background components
respectively and Q.. is the generating function for the interaction between back-
ground and signal.

The product moments of the integrated intensities can be obtained by differentia-
tion of Q(4,,4,)

ap+q

@D = (=17

Q41 23)i, =320 (37)

CiR 2
This completes the general solution.

3. Product moments of €2, small T regime

It is obvious that the larger is T, the greater is the smoothing of the field
amplitudes. Consequently, we want to employ as small a T as possible. Assume that "’
T is small compared with the distance over which the background field correlation
function decays to its exp~! value. Under this condition, only the k=0 terms in Q,
and Q. contribute; all k>0 terms are essentially negligible. It has been shown that
(Jakeman 1970, Blake and Barakat 1971, Barakat and Blake 1978. 1980)

02(hya ha) =02 T(hy +22) + * TH1 +1g(t, = 1))y e (38)

The G, function can be evaluated by the mean value theorem for integrals. The
result is

Go=b(i, T+ i, T)exp(ilt, ~ 1)) (39)

where b= ¢,(0).
Upon carrying out the necessary manipulation

. N 9\ - v 12 . - CG ‘ot
0y, A)=(1+03) " texp { —IEJT(:, +4,)} exp {K“Td%‘)_o} (40)
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The product moments of the integrated intensities were obtained by differentia-
tion of O(4,, 4,). I employed the symbol manipulation program, SMP, using a VAX
computer to effect the differentiations. The first few product moments are

@)=,y =0?+ ¢ (41)
(@0 =l +lg@P1+ 2032 +IES (42)
REFERENCES

BARAKAT, R., and BLAKE, J.,, 1978, Second order statistics of speckle patterns observed
through finite-size scanning apertures. Journal of Optical Society of America. 68, 1217-
1224; 1980, Theory of photoelectron counting statistics, an essay. Physics Report, 60,
225-340.

BLAKE, J., and BARAKAT, R., 1973, Two-fold photoelectron counting statistics: The clipped
correlation function. Journal of Physics, 6A, 1196-1210.

EMERSON, R., 1993, First probability densities for receivers with square law detectors. Journal
of Applied Physics, 24, 1163-1176.

JAKEMAN, E., 1970, Theory of optical spectroscopy by digital autocorrelation of photon
counting fluctuations. Journal of Physics, A3, 201-215.

Kac, M., and SIEGERT, A., 1947, On the theory of noise in radio receivers with square law
detectors. Journal of Applied Physics, 18, 383-397.

MaAvEr, M., and MmpLeToN, D., 1954, On the distributions of signals and noise after
rectification and filtering. Journal of Applied Physics. 25, 1037-1052.

" SELIN, 1., 1965, Detection Theory (Princeton, NJ: Princeton University Press). Chap. 3.

SLepiax, D., 1958, Fluctuations of random noise powers. Bell System Technical Journal, 37,
163. ’
TaoMas, J., 1969, Statistical Communication Theory (New York: Wiley), Chap 6.




5. PRODUCT MOMENTS: BACKGROUND/SIGNAL

The product moments of the integrated intensities were obtained by differentiation
of Q(A1,X2), Eq. (4.3), according to Eq. (3.16); I employed the symbol manipulation
program, SMP, using a VAX computer to effect the differentiations. The first few product

moments are:

() = () = 0" + [&[* (5.1)

(09) = 0?1+ ¢%(7)] + 207 |éc* + J&c]* (3.

(1}
Q)
~—

+ ot 4+ 26%(T) + b+ 2bcos AT] + 30| + |€]° (5.3)

(Q303) = 40°[1 + 4%(7) + ¢*(7)]
+ 0%)€)2 {4 + 8¢°(7)[1 + beos Ar] + 8b}
+ e 2+ g*(7) +4b + Shcos A7)

+40°[E|” + €] - (5.4)

Note that the frequency offset A only appears in (Q2Q5) and (Q3Q2) and not in (;Q5).

In the homodyne case where the frequency of the signal coincides with the maximum
of the power spectrum of the background. then A vanishes and the product moments then

depend upon ¢(7) only.




FILON TRAPEZOIDAL SCHEMES FOR HANKEL TRANSFORMS

OF ORDERS ZERO AND ONE



Abstract

Algorithms for evaluating zero order and first order Hankel transforms using Filon
quadrature philosophy are developed in the context of a trapezoidal approximation rather
than of a Simpson’s rule approximation previously discussed. Unlike the Filon/Simpson
algorithm previously developed, the Filon/trapezoidal algorithm tends to saturate, in that
increasing the number of quadrature points does not materially increase the accuracy.
Numerical examples are given and discussed.

1. Introduction

Previous papers [1,2] were devoted to the numerical evaluation of Hankel transforms

of orders zero and one.

H(r) = / () (rp)pdp (11)

using Filon quadrature philosophy. In (1}, the Filon approach is outlined in some detail for
Eq1.1 withn = 0. There the slowly varying part of the integrand, h(p), is approximated by
a quadratic function over the basic quadrate panel. For n = 1, see [2]. It was necessary to
consider ;L(p) = ph(p) as the basic fanction to be expressed as a quadratic. As with Filon’s
original approach to Fourier integrals, the errors incurred in Eq. 1.1 are proportional to
the derivatives of h(p) and h(p) themselves rather than to the whole integrand, hence are
relatively independent of 7.

In many areas, we do not require great accuracy for the Hankel transvforms, but need
to maintain a given accuracy more or less uniformly, independent of the magnitude of r.
The purpose of the present communication is to develop the trapezoidal version of the
Filon-Hankel approach. In (1,2, the scheme is really a generalization of Simpson’s rule,
since we are employing a quadratic approximation of h{p) and i)(p) over the panels. The
present approach is essentially a generaliza.tioniof the trapezoidal quadrature scheme, since

we are approximating h(p) and l-z(p) by a linear function over the panels.



2. Trapezoidal Algorithm/Zero-Order Transform

Consider the integral

Hy(r) = /Ml h(p)Jo(rp)pdp | (2.1)

P

for two points pr4+; and pi, where

Prkt1—pr =16

The points pi, where k = 0,1,..., N, are a subset of [a,b]. Approximate h{p) by a straight
line between p;. and pryq:

h(p)=A+ Bp (2.2)
It follows that
1
A= g(pkﬂhk — prhisr) (2.3)
) ,
B = E(}Lk+1 - ]lk) (24)

where h(pi) = hi. )
Upon setting v = h(p) and dv = Jy(rp)pdp, we integrate Hi(r) by parts; the end

result is
1/ 1., ,
Hi(r) = - [hisr i (P )pisr — hida(rpi)ps] — 7j[hkﬂ&l(r}’kﬂ) — hiSu(rpr)] (2.5)

* where we have used .
/ yJo(y)dy = zJ1(z) (2.6)
The numerical evaluation of the function

Su(z) = /Ile(y)dy (2.7)

Ju
is discussed at some length in the Appendix of [1], to which we refer.
Since
Byyy = bl = %(hprl — hy) (2.8)
then Eq. 2.5 reduces to
Hy(r) = %[hk-i-l N (rpear) = heJi(rpi)] — 6:7(}”'“-. - hk}[sn(rmﬂ) —Su(rpr)]  (2.9)

3



To evaluate the integral over [a,b], i.e., Eq. 1.1, divide [a, b] thusly

b=a+ N6 (2.10)

Hence N
H(r) =) Hy(r) (2.11)

k=0 .
The final result is )
1 1 X
H(T‘) = -1—' [h]\7+1 Jl(rpj\-') - h()Jl (T'PU)] - 3:5 Z(hk+] - hk)[$()(7"pk+1) — $U(7'pk )] (212)
k=0

This is the basic formula for the Filon/trapezoidal scheme for zero-order Hankel transforms.



3. Numerical Example for the Zero-order Case

As with the Filon/Simpson algorithm for the zero-order Hankel transform, we consider

as in [1] :
Mp) = = [arcos(p) ~ (1 - )], 0<p<1 (31)
H(r) = [QJ‘T(T).]Z, 0<r<oco | (3.2)

as our test case.

Unlike the Filon/Simpson algorithm, the Filon/trapezoidal algorithm tends to satu-
rate, in that increasing N does not materially increase the accuracy of the quadrature.
Of course this is not surprising, because we are now approximating h(p) by straight lines

rather than by quadratic. In the context of our numerical example, perhaps the best way

to see this is to fix » while varying N, examining the absolute error

[II(’I‘).-xuut - }I(T)mllnpuh’(d (33)

Some typical values of the absolute error are displayed in Table 1. This table does not
require any detailed comment. .=
In evaluating the various J-Bessel functions, we employed Mason’s algorithm [3], which

1s probably the most accurate currently available.

o



4. Trapezoidal Algorithm /First-Order Transform

Analagous to Eq. 2.1, we write

where

Now set u = h(p) and dv = Jy(rp)dp. Upon integrating by parts, we obtain

HA-(T) == }[E(Pkﬂ)JU(TPkH) - E(Pk)JU(TPk)]

i r%[}_l’(Pk+1)R()(TPA-+1) = h'(pi)Ro(7ps)]

where we have used the indefinite integral

/ J1(y)dy = —Ju(z)

and ~ -
R()((E) E/ J()(y)dy
0

See Appendix A of [2] for the numerical evaluation of this function.

As in Section 2, we can sum the various panels, leading to

1 .. -
H(r) = — - [};,J\-J(,(T'p,.\') -~ han(T’Pu)]
N

1 - )
+ 53 > (hisr — B [Ro(rprsr) = Ru(rpe)]

k=u

(4.3)

(44)

(4.5)

(4.6)

This is the basic formula for the Filon-trapezoidal scheme for first order Hankel transforms.



5. Numerical Example for the First-order Case

Let us consider the example [4]

0<r< o

The numerical results are summarized in Table 2. As with the corresponding algorithm in

Section 2, this algorithm also tends to saturate as N increases.

6. Summéry

The Filon/trapezoidal scheme is not meant to be a direct competitor to the

Filon/Simpson scheme. The main purpose of this quadrature scheme is to maintain a
given accuracy (provided it is not too exireme) more or less uniformly, independent of
the magnitude of the independent variable. An added advantage of this scheme is its
speed of execution, an important aspect for such problems as beam propagation in an
inhomogeneous or random medium, where the integral must be computed a large number

of times. Reference is made to [3] for invention of the Hankel transforms using the sampling

expansion in connection with the Filon/Simpson and the Filon/trapezoidal schemes.
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Table 1. Absolute error of Filon/trapezoidal calculations for zero-order case, example in Eqs 3.1 and 3.2.

N =300

r | N=100 N =200 N = 400

6 | 3.727E-06 9.202E-07 4.069E-07 2.282E-07
12 | 3.063E-06 7.722E-07 3.447E-07 1.945E-07
18 | 2.099E-06 5.418E-07 2.443E-07 1.386E-07
24 | 1.083E-06 2.928E-07 1.343E-07 7.690E-08
30 | 1.901E-07 6.871E-08 3.427E-08 2.048E-08
40 | 8.976E-07 2.354E-07 1.068E-07 6.082E-08
50 | 5.229E-07 1.199E-07 5.167E-08 2.861E-08
60 | 2.053E-07 6.985E-08 3.411E-08 2.015E-08
80 | 2.544E-07 4.877E-08 1.941E-08 1.026E-08



Table 2. Absolute error of Filon/trapezoidal calculations for first-order case, example in Eqgs 5.1 and 5.2.

N =300

r | N=100 N =200 N = 400
6 | 2.764E-04 9.789E-05 5.330E-05 3.463E-05
12 | 2.186E-04 7.801E-05 4.260E-05 2.772E-05
18 | 1.769E-04 6.422E-05 3.527E-05 2.302E-05
24 | 1.360E-04 5.080E-05 2.822E-05 1.851E-05
30 | 9.406E-05 3.715E-05 2.096E-05 1.386E-05
40 | 1.129E-04 4.214E-05 2.331E-05 1.526E-03
50 | 1.029E-04 3.578E-05 1.927E-05 1.243E-05
60 | 7.152E-05 2.157E-06 1.093E-05 6.818E-06
70 | 2.863E-05 4.011E-05 9.669E-07 2.174E-07
80 | 1.479E-05 1.215E-05 7.884E-06 5.537E-06
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NUMERICAL EVALUATION OF FOURIER INTEGRALS:

FILON QUANDRATIVE VERSUS THE FFT




1. INTRODUCTION

We are concerned with the numerical evaluation of the finlite range Fourier integral

b
flv) = / F(p)e™? dp, —00 < v < 00 (1.1)

assuming that F(p) varies slowly compared to the complex-valued exponential term. The
case where F'(p) is of rapid variation is analyzéd by a different approach, see Section 5. For
large values of |v|, a graph of the integrand consists of positive and negative areas of nearly
equal size. The additién of these areas results in substantial loss of accuracy. Filon [1]
conceived the idea of retaining Simpson’s rule, but requiring that only F(p) be fitted to a
quadratic over the basic subinterval instead of the entire integrand F(p)exp(ivp). The fact
that only F(p) has to be approximated means that the number of subintervals to be taken
can be relatively small in many cases of practical interest. An additional feature of the
Filon quadrative philosphy is that the error incurred is relatively independent of v because

the error is proportional to the derivatives of F(p) itself rather than to F(p)exp(ivp).

[§V]



2. FILON/SIMPSON ALGORITHM

We will now sketch in some detail the Filon/Simpson algorithm for evaluating the
finite range Fourier integral (under the fundamental assumption that F(p) varies slowly
compared to the complex-valued exponential terms also in the integrand.

Consider the integral
b
fr() =/ F(p)e™? dp (2.1)

which is effectively a double panel of three quadrature points: pog+2, pok+1, P2k Where

[\]
(3]
~—

6 = (pak+2 — P2k+1) = (P2ks1 — P2k). (2.

This panel is a subset of the larger interval [a,b].
Following Filon we assume that F(p) is smooth enough to be approximated by a

quadratic function over the interval pax < p < pog4o

F(p) = by + bs(p — pax+1) + bs(p — pak41)’ (2.3)

where the b’s are as yet unknown. Upon solving for the b's we have

by = Fa
1
by = %(FQk-}'? — Foy)
1
by = _7—5,_;(F2k+2 - 2F2k+1 + Fyi) (2.4)

where Fopig = F(par+2), ete. The first and second derivatives of F(p) are also needed.

Differentiating Eq. (2.3) and then employing Eq. (2.4) yvields

Fhiss = 5(3Fskes — 4P + Fae) (2.5)
, 1
2 = 2—6(—sz+2 + 4F5k41 — 3F)
Finally
Fy = %(szu —'2F2k+1 + Fop) (2.6)



Next integrate Eq. (1.1) twice by parts, the final result is

z . .
fr(v) = =(Fore™™P* — Fypyqe'’P2h+2)
) v

0

+ vQ( 2’1mLzeivm"+2 - Fékeivp“)
+ %Fé'k(e"”"““ — givpan) (2.7)

Substitution of Eqs. (2.5) and (2.6) ultimately leads to

fi(v) = ——(FapyoeiPh+2 — FypeivPom)
v
: ‘ .
+ 26 ~(3Fort+2 — 4Foky1 + Fop)e' P32 + (Fopyo — 4Fop4y + 3Fop )e™™P2
20V~
-+ 5: 3(F2k+2 —2F5ky1 + Fyp)(e™PPor+2 — Civm") (2.8)
v

This expression is the basic building block of the Filon-Simpson algorithm.

To evaluate Eq. (1.1). we divide the interval of integration [a,b] thusly
b=a+ N6 (2.9)

where N is an even integer (as in the standard Simpson method: thus
(N-2)/2
f)="Y filv). (2.10)
: k=0
Combining terms in the summation. this eventually becomes

; (N-2)/2 c %
f©) = =(Foe'*®> — Fye® 4 ( L, ’°>ef°P2~ (2.11)
k=

1
26v? §%v3

where

GO = Fg — 4F1 + 3F0 (212&)
Gr = Fopyo —4Fop1 + 6Fy — 4Fo 1 + Fog_ (2.12b)
GN...‘_) =3FN—-4FN—1 +FN-2 v (2.120)
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and

Ho = '—FQ + 2F1 - FO (2138.)
Hy = —Fopqr +2F5p41 — 2Fop_1 + Fop (2.13b)
Hy_o = Fny —2Fn_1+ Fn_o (2.130)

In Egs. (2.13b) and (2.13c), we have 0 < k < (N — 2)/2. Equation (2.11) is the basic
expression for the Filon/Simpson quadrature algorithm.
A modification must be made when v = 0, because of the presence of v in the denom-

inators of Eq. (2.11). Fortunately this is straightforward because

b
F0) = / F(p) dp. (2.14)

Since F(p) is assumed to be fairly smooth. the integral can be evaluated directly using a
standard quadrature formula; our case. Simpson'’s rule.

Equation (2.11) constitutes the corrected complex exponential version of the Filon
scheme found in [2]. Equation (2.11) is markedly different than the final forms of the
sine and cosine versions derived by Filon [1]. He combined terms in a manner that was
conducive to hand calculation techniques of his time. resulting in calculations that were
independent of F(p) and so could be tabulated without the knowledge of F(p). However,
computational abilities are considerably advanced now, so that it is unnecessary to store
tables of values in order to perform the integration. Direct calculation using Eq. (2.11) by
computer is not difficult. Reference is made to [3.4] for the explicit expressions of the sine
and cosine versions of Filon’s original analysis: they different significantly in form from
Eq. (2.11) particularly with respect to the very troublesome « and 8 terms in the original
version.

We omit any discussion of the error incurred as it is still a matter of contention [3].
However, the error is proportional to the derivatives of F(p) itself rather than to the entire

integrand, hence are relatively independent of the magnitude of the variable v.




3. FILON/TRAPEZOIDAL ALGORITHM

In some situations we do not require great accuracy but ﬁeed to maintain a given
moderate accuracy, more or less uniformly, independent of the magnitude of v. To this
end we develop a trapezoidal version of the previous algorithm, the Filon/trapezoidal
algorithm.

We now sketch this algorithm. Consider two points pr4+1 and pr which are a subset

of [a,b]. Approximate F(p) as a straight line between pi+1 and px

F(p)=A+Bp,  pr<p<pr+ (3.1)
Here .
A= 3(Pk+1Fk — i Fisir)
1 (3.2)
B = <(Fet1 — Fi)
where § = (pr+1 — pr). Also _
1
FI:g(Fk_;.]—Fk). (33)
Upon integrating by parts and using the above equations. we have
fr(v) = z (FrapeoPr+t — eri”p")
v
1 . .
+ e (Fee1 — Fi) (e°Pr+t — P (3.4)

To evaluate the integral over [a,b] i.e.. Eq. (1.1). divide [a,d] thusly b = a + N§ so

that
N
fle) =Y fulv). (3.5)
k=0

The final result is

f(v) = % (FNei"PN - Fueivpo)
1 N
+ 5 ;)(Fkﬂ — Fy) (e"Prtt — 'P¥) (3.6)

When v = 0, we again employ Eq. (2.14).



We should emphasize that the Filon/trapezoidal algorithm is not meant to be a direct
competitor to the Filon/Simpson algorithm as regards great accuracy. Rather its main use
is to maintain a given, but moderate accuracy, independent of the magnitude of v, when

speed of execution is important.
In the special case where the limits of integration of Eq. (1.1) are symmetric (i.e.,

a = —b), then the Filon/trapezoidal algorithm can be written

b M mb
v) = ivb/M
.f( ) <M> mzz—]VIHmF<M>e

where (2M + 1) is now the number of quadrature points, and

(sin ”—N‘}) 2

(32)

b . vb\"~
H — _ v —ivb/m i
ae= (157 =) 1 (5)

ivb ) vb\?
H_ — Y —ivb/m hid
= (1657 )/ (M)

H, = for m#+M




